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NOMENCLATURE 

specific heat at constant pressure; 
gravitational acceleration; 
thermal diffusivity; 
generalized Laguerre polynomial ; 
Prandtl number; 
dimensionless heat flux parameter; 
Reynolds number; 
dimensional temperature; 
reference temperature ; 
wall temperature; 
temperature outside of boundary layer; 
dimensional x, and y, velocity components; 
dimensional x1 velocity component outside of 
boundary layer ; 
dimensionless x velocity component outside of 
boundary layer ; 
square of dimensionless x velocity component; 
tangential and normal dimensional coordinates; 
transformed dimensional length. 

Greek symbols 

angle between the direction of gravity and the local 
tangent to the boundary; 
thermal expansivity; 
mass density; 
dimensionless wall shear; 
dimensional wall shear ; 
viscosity ; 
dimensionless temperature parameter ; 
dimensionless temperature parameter outside of 
boundary layer. 

TWO ESSENTIAL classes of methods have evolved for the 
solution of boundary layer flows : discretization methods, 
and weighted residual methods. In the class of weighted 
residual methods, with which the work in this study is 
concerned, a solution is sought using a family of basis 
functions to generate a truncated series. The selection of this 
set of basis functions is crucial in terms of both accuracy and 
rate of convergence of the truncated series. A formulation 
which anticipates this problem and minimizes it may be 
expected to yield a significant improvement in the 
effectiveness of the algorithm. Such a consideration was the 
background for the work of Hsu [l] who presented as a basis 
a complete set of orthogonal eigenfunctions which are 
particularly pertinent to the governing boundary-layer 
equations for a class of steady two-dimensional 
incompressible laminar flow. The basis functions have closed 
form solution, and can be predetermined and used in a 

Galerkin method for all problems governed by the system of 
equations treated. This is advantageous, for although 
complete sets of orthogonal eigenfunctions have been 
previously employed [2-41, the sets used were particular to 
the perturbations about a given Falkner-Skan solution and 
were to be determined numerically in each case. By further 
ensuring the satisfaction of certain compatability conditions 
Hsu demonstrated that the formulation in terms of the set of 
basis function can efficiently reproduce accurate results over 
large regions of the boundary layer for two standard flow 
problems. The purpose of this study is to examine whether or 
not the method and its formulations may be adapted with 
similar advantage to deal with flows involving the additional 
complications of heat transfer, in forced and free convection. 

For a steady, two-dimensional, incompressible, laminar 
flow past a submerged body, the governing boundary-layer 
equations in dimensional form are 

dV, au: 
= 0, r + ~7 + PgBr(T, - T,r)cosu,, (2) 

1 ah 

( aT, dT, 
PC, ul~+v’- 

1 ah > 

(3) 

The boundary conditions are 

u1(%0) = 0, ~,(x,,O) = 0, T,(x,,O) = i-,(x,), 

(4) 

ur(xr, ~0) = Vr(x,), T,(x,, ~0) = T&t). 

The number of dependent parameters can be reduced by a 
transformation of von Mises type, and the rate of variation of 
the boundary-layerathickness can be minimized by a 
Falkner-Skan transformation, according to 

s 

XI x= V,(s)ds/LU,, 11 = X-I/~ 
0 [S 

112 
u,(x,,s)ds/V, > 1 

w = (u,/v,)Z, 
dh-r U1 

v = y,u, - 
dx 

(VLV,)‘” + u,(Lv,/v)“*/v,, 

fJ = VIP,, 4 = (VI - TJ/Vm - TwN*, 

@ = (T, - TJTR. (5) 
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In terms of these variables the equations become 

?w 
xp 

?x 

(7) 

w(x,O) = 0, &x.0) = 0, w(.x, L) = I. &x,x) = 1, (8) 

where the following notation has been introduced : 

p(x) = 2xdln u:‘d.u, A(x) = Zx@g[j, LT,cosa,,/U”Ciz,, 

(9) 

B(x) = 2xdln @,!ds, C(r) = u2 Liz, .!8@C, T,. 

The case of free convection, where U, is identically zero, 
can be treated in a similar fashion by making the 
transformations 

The result will be equations (6) and (7) with only the 
definitions of the parameters 8, A and C altered. Now 

/I = 0, A = Zx@gp, L3 T,cosa,/f3v”, 

C = v2 f ‘/8C,L2 T,@. 

The dimensionless function f can be defined in a manner 
convenient to the problem at hand. An obvious choice would 
be to define it so that A is unity. For free convection, 
boundary condition (8) would be replaced by one where w 
vanishes as q approaches infinity. 

The Galerkin technique proposed by Hsu uses an ortho- 
gonal set of representing functions which by themselves 
satisfy the dominant terms in the equations. In this spirit, the 
equations are first brought into a form which emphasizes the 
dominant terms by a further change of independent variable, 
replacing q by <, where 

T, L 

;= 
ri 

SW,<; “%)d.s . 
. 0 1 

in which w0 is the Falkner- Skan solution, that is, the solution 
of equation .(6) with only q dependency. Under this transfor- 
mation, equations (6) and (7) become 

+ R,(x,;l + fi(l -M.) + A($“’ - 1). (10) 

where 

c yi- [ dln(w/#) 
Qz(i) = - [ + 1/6Pr + t 2 - pdi + 2pr-s5, 

4Prwo dn 

The first three terms on the RHS can be shown to he 
dominant, as was done in [l]. The choice of representing 
functions is made by selecting functions which make these 
terms proportional to the function itself. Thus, suitable basis 
functions are 

with 

N, = [I-(k)/T(k + 2;31]’ ’ 

Here L denotes the generalized Laguerre polynomial, and the 
N, make the y. and g. orthonormal. 

To solve equations (6) and (7). w and 4 are taken to have 
the forms 

(12) 

d(x, i) = H(x, i) + 1 &(~~)gdll 

where the functions F and H are chosen so as to improve the 
rate of convergence of the series solution. Substitution of (12) 
into (10) and (1 I), and subsequent use of the ortho-normality 
relations gives the set of ordinary differential equations 

I 

.xz+kCk= C E,,C,+E,, 
“l= I 

dD, 
, 

Y------ + kD, = z H,, D, +- Kk. 
dx m=1 

(13) 

iI41 

1 

H,,, = - B6,, + ePr;(Pr;)m’ .’ Qz(i)g,(i)g,J;)Pr dc. 
0 

dF 
- Xdx+R1+A H -I iD,,,g,,‘)’ ’ - 1 jjd:. 

1 
and 

I FH 
K, = ehi(Pr[)- 2’3 Prg,([) (c/P,) ~~~ 

0 ap 

+ [l + 1/3Pr + Ql(i)] $ - x r,t 

+ R, + B H + ;D,g,jl” - H’j 
1 
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The integrals appearing in these expressions can be carried 
out by Gauss-Laguerre quadrature formulae [6]. This was 
the viewpoint adopted by Hsu for the constant temperature 
case. From a knowledge of the asymptotic behavior of the 
Falkner-Skan solutions, he introduced functions which have 
the correct behavior for large and small values of [, and let F 
be a linear combination of the initial profile and these 
functions. In the variable temperature case, the choice of these 
functions is not as clear, since for Prandtl numbers different 
from unity, the momentum and thermal boundary layers will 
have different thickness scales. A reasonable choice, which 
should at least be satisfactory for values of the Prandtl 
number near unity, is to choose F and H in the form 

F = we(i) + X,(x)fi(i), H = +0(i) + Xz(x)fz(I)> 

where 

The X’s are chosen by expanding w and 4 in the form 

w = &(x)4”. 4 = :%(x)s”. 
z z 

Substitution of these into (6) and (7) leads to recursion 
relations relating the a, and )?I. to az and fi2. After some 
manipulation, 

Xi = 1.6(8,/b, - 6)(4, - Bo) + fV.4 - B)(b&M”z> 

X, = 0.8(& - /Io)(2a0 + 3a2)/b2 

-4(A - j)(b2/~~“az)“‘//$ + 8Pr(C,b,a:” - C/&a:/*). 

These expressions depend on knowledge of a2 and /Is. This 
would suggest that the most recent values be used during 
integration with respect to [. Hsu was able to obtain 
satisfactory results by approximating fiz as a linear function 
of p. The present problem in the general case is more complex 
because a2 and bz will depend presumably on 0 and LJ, as well 
as their logarithmic derivatives. Even if one assumed a linear 
dependence of at and /3* on the two logarithmic derivatives, 
two preliminary integrations would be needed to establish the 
relationship. Only for problems where the variation of the 
external temperature is sufficiently small will the single pass 
technique of Hsu work well. Thus it may be just as easy to use 
results for a2 and /12 at a given x which are extrapolated from 
the immediately preceding points. 

Equations (13) and (14) reduce the problem to a system of 
first order differential equations of the form 

x 2 + Ly = R(x, y). 

Since the system is diagonally dominant, it is stiff and can be 
solved numerically using a predictor-corrector scheme as 
given in [S]. 

A standard forced-convection boundary layer problem is 
the laminar flow past a circular cylinder. For zero Grashof 
and Eckert numbers, and a Prandtl number of0.7, Eckert [7] 
found that the experiments of Schmidt and Wenner [S] at a 
Reynolds number of 1.7 x lo5 could be approximated by the 
external velocity 

U = 28 - o.451e3 - o.00578e5 

where f3 = x,/r and r is the radius of the cylinder. Choosing 
the radius as the non-dimensional length L, one finds from 
(5) that 

x = e2 - 0.112784 - o.000964e6, 

07- 

06- 
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FIG. 1. Wall shear and heat transfer: -, present results; 
- .--, F&sling [ll]; . . ., Hsu case 1 [9] ; x x x x , Hsu 
case 2 [9] ; ---, Schmidt and Wenner (experimental) [8]. 

The dimensionless wall shear stress r, defined by 

r = s,,,Re’“/pU~ = U2~2/2x’z 

where z, is the true (dimensional) shear stress, and the 
dimensionless heat flux 4, defined by 

L/Re”‘(T, - T,) = 0.5U(a2fi,/x)1’2 

were selected as the suitable variables for comparison with 
previous work. The results of the computations made with Xi 
and X, as linear functions of/l and with ten terms in each of 
the series given in equations (12), are shown in Fig. 1. The wall 
shear agrees well with calculations obtained using a spline fit 
technique [9], in that the curves appear essentially identical. 
The present Galerkin method predicts a heat-transfer coef- 
ficient which agrees well with those given in [lo], [l l] for the 
experimental results up to x = 0.4, when deviations start to 
occur. 

It appears that the present approach is a useful one for 
thermal boundary layers, at least for Prandtl numbers near 
unity. There is more complexity in the initial formulation 
than for methods which rely heavily on a more direct 
numerical approach, but the results seem to imply that this 
complexity may have advantages in the precision of the 
results and the speed of computation. In any case, the 
approach seems to be applicable for a broader range of 
parameters than many of the previously described methods. 
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A HEAT TRANSFER PREDICTION METHOD FOR 
TURBULENT BOUNDARY LAYERS DEVELOPING OVER 

ROUGH SURFACES WITH TRANSPIRATION 

P. M. LIGRANI,* W. M. KAYS and R. J. MOFFAT 

Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, U.S.A 

(Receioed 17 March 1980 and in revised form 30 September 1980) 

NOMENCLATURE 

smooth-wall sublayer thickness ; 
AU,lv; 
rough-wall sublayer thickness ; 
ARUJV; 
local skin friction coefficient; 
specific heat of fluid; 
pipe diameter; 
blowing fraction ; 
equivalent sandgrain roughness ; 
fully rough acceleration parameter, 

(rlCi,)l(d%ldx); 
mixing length ; 
1Urlv ; 
molecular Prandtl number; 
wall heat flux; 
radius of spheres comprising test surface; 
pipe radius ; 
roughness Reynolds number, k,U,/v : 
pipe diameter Reynolds number; 
enthalpy thickness Reynolds number ; 
Stanton number; 
fully rough wall temperature step ; 
WT, ; 
mean temperature ; 
wall temperature; 

46lPC,U,i 

* Present adddress: von Karman Institute for Fluid Dy- 
namics, Chauss&s de Waterloo 72, B-1640 Rhode-St-Genese, 
Belgium. 

freestream velocity ; 
friction velocity ; 
velocity of transpired fluid at the wall; 

V&J,; 
coordinate in downstream direction.; 
coordinate normal to surface ; 
I’ U,lv ; 
momentum thickness ; 
Karman constant; 
kinematic viscosity ; 
density. 

INTRODUCTIO\ 

THI: PURPOSE of the present communication is to present a 
closure method for the boundary layer equations which can 
be used to predict Stanton numbers, skin friction coefficients, 
and mean profiles in boundary layers developing over rough 
surfaces. The method is the only published one known to the 
authors for which the combined effects of heat and momen- 
tum transfer with both favourable pressure gradient and 
transpiration may be predicted. Closure is accomplished by 
specification of mixing-length and turbulent Prandtl number 
distributions, along with a wall temperature step. 

Techniques presently available to predict effects of rough- 
ness on turbulent flows are numerous. One of the earliest of 
these incorporating a mixing-length closure was suggested by 
van Driest [ 11. More recently developed methods range from 
the integral techniques of Dvorak [2, 33 to differential 
boundary layer methods such as that suggested by Antonia 
and Wood [4]. Another recent technique is presented by 
Cebeci and Chang [S], who discuss a differential method with 
near wall mixing-length equations based on contributions by 


